Skip to main content

Mudança média romana


Quem é Moving People Moving People é especializado em recrutamento internacional no campo da saúde para hospitais, cuidados e lares, cuidados domiciliários e o setor farmacêutico. Moving People seleciona pessoal médico e paramédico do exterior. Temos uma presença estrutural nos países candidatos de origem. 88 dos candidatos que selecionamos completar seu período de teste com sucesso, o que é mais do que a média nacional. Nosso método, baseado no respeito pelos seres humanos e a ética, provou sua eficácia. O bem-estar de nossos novos funcionários, a satisfação de seus empregadores e, portanto, os pacientes são nossos principais objetivos. Obrigado por sua visita, The Moving People team A filosofia Moving People Desde o início dos tempos, a migração de trabalhadores estrangeiros tem sido parte da vida humana. Moving People é o único especialista em recrutamento internacional que abrange todas as profissões específicas no setor de saúde. Selecionamos pessoal qualificado no exterior (Portugal, Romênia, Tunísia, Líbano) para exercer sua profissão na Bélgica ou na França. Desde 2005, a Moving People oferece treinamento, acompanhamento e apoio profissional e privado para (para) pessoal médico que emigra. Este apoio e, mais importante mesmo, o acompanhamento fornecido no novo ambiente de vida são uma garantia de sucesso. Moving People quer estabelecer uma verdadeira parceria de referência com os empregadores com base na confiança, no profissionalismo e na humanidade, que são a essência das nossas profissões. Desde o lançamento de suas atividades em 2005, a Moving People alcançou mais de 1.000 colocações no mercado de trabalho belga, onde é líder incontestável. Movendo pessoas - Copyright 2018 copyExponential Suavização Explicado. Copie os direitos autorais. O conteúdo no InventoryOps é protegido por direitos autorais e não está disponível para republicação. Quando as pessoas primeiro encontram o termo Suavização Exponencial, eles podem pensar que parece um monte de alisamento. Seja qual for o alisamento. Eles então começam a imaginar um cálculo matemático complicado que provavelmente requer um diploma em matemática para entender, e espero que exista uma função incorporada do Excel disponível se eles precisarem fazê-lo. A realidade do alisamento exponencial é muito menos dramática e muito menos traumática. A verdade é que o suavização exponencial é um cálculo muito simples que realiza uma tarefa bastante simples. Ele apenas tem um nome complicado porque o que tecnicamente acontece como resultado deste cálculo simples é realmente um pouco complicado. Para entender o suavização exponencial, ajuda a começar com o conceito geral de suavização e alguns outros métodos comuns usados ​​para o alisamento. O que é suavizar O suavização é um processo estatístico muito comum. De fato, nós encontramos regularmente dados suavizados em várias formas no nosso dia-a-dia. Sempre que usar uma média para descrever algo, você está usando um número suavizado. Se você pensa sobre o motivo pelo qual você usa uma média para descrever algo, você entenderá rapidamente o conceito de suavização. Por exemplo, acabamos de experimentar o inverno mais caloroso registrado. Como podemos quantificar isso? Bem, começamos com conjuntos de dados das temperaturas diárias altas e baixas durante o período que chamamos de Inverno por ano na história registrada. Mas isso nos deixa com um monte de números que saltam bastante um pouco (não é como a cada dia que este inverno foi mais quente do que os dias correspondentes de todos os anos anteriores). Precisamos de um número que remova todo esse salto dos dados para que possamos comparar mais facilmente um inverno com o próximo. Remover o salto nos dados é chamado de suavização e, neste caso, podemos usar apenas uma média simples para realizar o alisamento. Na previsão da demanda, usamos alisamento para remover a variação aleatória (ruído) de nossa demanda histórica. Isso nos permite identificar melhor padrões de demanda (principalmente tendência e sazonalidade) e níveis de demanda que podem ser usados ​​para estimar a demanda futura. O ruído em demanda é o mesmo conceito que o salto diário dos dados de temperatura. Não surpreendentemente, a maneira mais comum de remover o ruído do histórico de demanda é usar uma média simples ou mais específica, uma média móvel. Uma média móvel apenas usa um número predefinido de períodos para calcular a média, e esses períodos se movem com o passar do tempo. Por exemplo, se eu estiver usando uma média móvel de 4 meses e hoje é 1 de maio, estou usando uma média de demanda ocorrida em janeiro, fevereiro, março e abril. No dia 1 de junho, vou usar a demanda de fevereiro, março, abril e maio. Média móvel ponderada. Ao usar uma média, estamos aplicando a mesma importância (peso) a cada valor no conjunto de dados. Na média móvel de 4 meses, cada mês representava 25 da média móvel. Ao usar o histórico de demanda para projetar a demanda futura (e especialmente a tendência futura), é lógico chegar à conclusão de que você gostaria que o histórico mais recente tenha um impacto maior na sua previsão. Podemos adaptar nosso cálculo de média móvel para aplicar vários pesos a cada período para obter os resultados desejados. Nós expressamos esses pesos como porcentagens e o total de todos os pesos para todos os períodos deve somar até 100. Portanto, se decidimos que queremos aplicar 35 como o peso para o período mais próximo em nossa média móvel ponderada de 4 meses, podemos Subtrair 35 de 100 para descobrir que temos 65 restantes para dividir nos outros 3 períodos. Por exemplo, podemos terminar com uma ponderação de 15, 20, 30 e 35 respectivamente para os 4 meses (15 20 30 35 100). Suavização exponencial. Se voltarmos ao conceito de aplicar um peso ao período mais recente (como 35 no exemplo anterior) e espalhar o peso restante (calculado subtraindo o peso do período mais recente de 35 de 100 para obter 65), temos Os blocos de construção básicos para o cálculo de suavização exponencial. A entrada de controle do cálculo de suavização exponencial é conhecida como o fator de suavização (também chamado de constante de suavização). Representa essencialmente a ponderação aplicada à demanda de períodos mais recentes. Então, onde usamos 35 como a ponderação para o período mais recente no cálculo da média móvel ponderada, também poderíamos escolher usar 35 como fator de suavização em nosso cálculo exponencial de suavização para obter um efeito semelhante. A diferença com o cálculo de suavização exponencial é que ao invés de nós ter que descobrir o quanto de peso a aplicar a cada período anterior, o fator de suavização é usado para fazer isso automaticamente. Então, aqui vem a parte exponencial. Se usarmos 35 como fator de suavização, a ponderação da demanda de períodos mais recente será de 35. A ponderação da demanda nos próximos períodos mais recentes (o período anterior ao mais recente) será 65 de 35 (65 provém de subtrair 35 de 100). Isso equivale a 22,75 ponderações para esse período se você fizer a matemática. Nos próximos períodos, a demanda será 65 de 65 de 35, o que equivale a 14,79. O período anterior será ponderado como 65 de 65 de 65 de 35, o que equivale a 9.61, e assim por diante. E isso continua com todos os seus períodos anteriores até o início do tempo (ou o ponto em que você começou a usar o suavização exponencial para esse item em particular). Você provavelmente pensa que isso parece uma série de matemática. Mas a beleza do cálculo de suavização exponencial é que, ao invés de ter que recalcular em relação a cada período anterior sempre que você obtém uma nova demanda de períodos, você simplesmente usa a saída do cálculo de suavização exponencial do período anterior para representar todos os períodos anteriores. Você está confuso ainda Isso fará mais sentido quando olhamos para o cálculo real. Normalmente, nos referimos à saída do cálculo de suavização exponencial como a próxima previsão do período. Na realidade, a previsão final precisa de um pouco mais de trabalho, mas para os fins desse cálculo específico, nos referiremos a ele como a previsão. O cálculo de suavização exponencial é o seguinte: a demanda de períodos mais recente multiplicada pelo fator de suavização. PLUS A previsão de períodos mais recente multiplicada por (um menos o fator de suavização). D os períodos mais recentes exigem S o fator de suavização representado na forma decimal (então 35 seria representado como 0,35). F os períodos mais recentes previstos (a saída do cálculo de suavização a partir do período anterior). OU (assumindo um fator de suavização de 0,35) (D 0,35) (F 0,65) Não é muito mais simples do que isso. Como você pode ver, tudo o que precisamos para obter dados aqui são os períodos mais recentes, a demanda e os períodos mais recentes previstos. Aplicamos o fator de suavização (ponderação) para os períodos mais recentes exigindo da mesma maneira que seria no cálculo da média móvel ponderada. Em seguida, aplicamos a ponderação restante (1 menos o fator de suavização) para a previsão de períodos mais recentes. Uma vez que a previsão de períodos mais recentes foi criada com base na demanda dos períodos anteriores e nos períodos anteriores previstos, que se baseou na demanda do período anterior e na previsão do período anterior, que se baseou na demanda do período anterior Isso e a previsão para o período anterior, que se baseou no período anterior. Bem, você pode ver como todos os períodos anteriores são representados no cálculo, sem realmente voltar e recalcular qualquer coisa. E foi isso que impulsionou a popularidade inicial do suavização exponencial. Não era porque fazia um melhor trabalho de suavização do que a média móvel ponderada, era porque era mais fácil de calcular em um programa de computador. E, porque você não precisava pensar sobre a ponderação para dar períodos anteriores ou quantos períodos anteriores usar, como você faria na média móvel ponderada. E, porque soava mais frio do que a média móvel ponderada. Na verdade, pode-se argumentar que a média móvel ponderada proporciona maior flexibilidade, pois você tem mais controle sobre a ponderação de períodos anteriores. A realidade é que qualquer um destes pode fornecer resultados respeitáveis, então por que não ir com um som mais fácil e mais frio. Suavização exponencial no Excel Veja como isso realmente seria exibido em uma planilha com dados reais. Copie os direitos autorais. O conteúdo no InventoryOps é protegido por direitos autorais e não está disponível para republicação. Na Figura 1A, temos uma planilha do Excel com 11 semanas de demanda e uma previsão exponencialmente suavizada calculada a partir dessa demanda. Eu usei um fator de suavização de 25 (0,25 na célula C1). A célula ativa atual é Cell M4 que contém a previsão para a semana 12. Você pode ver na barra de fórmulas, a fórmula é (L3C1) (L4 (1-C1)). Assim, as únicas entradas diretas para este cálculo são a demanda de períodos anteriores (Cell L3), os períodos anteriores previstos (Cell L4) e o fator de suavização (Cell C1, mostrado como referência de célula absoluta C1). Quando começamos um cálculo de suavização exponencial, precisamos conectar manualmente o valor para a 1ª previsão. Assim, na célula B4, em vez de uma fórmula, acabamos de digitar a demanda do mesmo período que a previsão. Na célula C4, temos o nosso 1º cálculo exponencial de suavização (B3C1) (B4 (1-C1)). Podemos copiar Cell C4 e colá-lo nas células D4 através de M4 para preencher o resto das nossas células de previsão. Agora, você pode clicar duas vezes em qualquer célula de previsão para ver se é baseada na célula de previsão de períodos anteriores e na célula de demanda de períodos anteriores. Portanto, cada cálculo subseqüente de suavização exponencial herda a saída do cálculo de suavização exponencial anterior. É assim que a demanda de cada período anterior é representada no cálculo dos períodos mais recentes, embora esse cálculo não faça referência direta a esses períodos anteriores. Se você deseja ter fantasia, você pode usar a função Excels trace precedents. Para fazer isso, clique em Celda M4 e, em seguida, na barra de ferramentas da fita (Excel 2007 ou 2018), clique na guia Fórmulas e, em seguida, clique em Preenchimentos de rastreamento. Ele irá desenhar linhas de conector para o primeiro nível de precedentes, mas se você continuar clicando em Preocupações de rastreamento, irá desenhar linhas de conector em todos os períodos anteriores para mostrar as relações herdadas. Agora, vamos ver o que o alisamento exponencial fez por nós. A Figura 1B mostra um gráfico de linha de nossa demanda e previsão. Você vê como a projeção exponencialmente suavizada remove a maior parte da irregularidade (o salto em torno) da demanda semanal, mas ainda consegue seguir o que parece ser uma tendência ascendente na demanda. Você também notará que a linha de previsão suavizada tende a ser menor do que a linha de demanda. Isso é conhecido como atraso de tendência e é um efeito colateral do processo de suavização. Sempre que usar o suavização quando uma tendência estiver presente, sua previsão ficará para trás da tendência. Isso é verdade para qualquer técnica de suavização. Na verdade, se continuássemos esta planilha e começássemos a inserir números de demanda mais baixos (fazendo uma tendência decrescente), você veria a queda da linha de demanda e a linha de tendência se deslocará acima dela antes de começar a seguir a tendência descendente. É por isso que eu mencionei anteriormente a saída do cálculo de suavização exponencial que chamamos de previsão, ainda precisa de mais algum trabalho. Há muito mais para a previsão do que apenas suavizar os solavancos na demanda. Precisamos fazer ajustes adicionais para coisas como atraso de tendência, sazonalidade, eventos conhecidos que podem afetar demanda, etc. Mas tudo isso está além do alcance deste artigo. Provavelmente, você também irá usar termos como suavização exponencial e suavização triplo exponencial. Estes termos são um pouco enganadores, uma vez que você não está re-suavizando a demanda várias vezes (você poderia, se quiser, mas isso não é o ponto aqui). Estes termos representam o uso de suavização exponencial em elementos adicionais da previsão. Assim, com suavização exponencial simples, você está suavizando a demanda base, mas com o alisamento duplo-exponencial, você suaviza a demanda base mais a tendência, e com alisamento triplo-exponencial você suaviza a demanda base mais a tendência mais a sazonalidade. A outra pergunta mais comum sobre o alisamento exponencial é onde eu consigo meu fator de suavização. Não há resposta mágica aqui, você precisa testar vários fatores de suavização com seus dados de demanda para ver o que obtém os melhores resultados. Existem cálculos que podem definir automaticamente (e alterar) o fator de suavização. Estes se enquadram no termo alisamento adaptativo, mas você precisa ter cuidado com eles. Simplesmente não há uma resposta perfeita e você não deve implementar de forma cega qualquer cálculo sem testes completos e desenvolver uma compreensão completa do que esse cálculo faz. Você também deve executar cenários do que-se para ver como esses cálculos reagem às mudanças de demanda que podem não existir atualmente nos dados de demanda que você está usando para testar. O exemplo de dados que usei anteriormente é um exemplo muito bom de uma situação em que você realmente precisa testar alguns outros cenários. Esse exemplo de dados específicos mostra uma tendência ascendente bastante consistente. Muitas grandes empresas com software de previsão muito caro ficaram em grande dificuldade no passado não tão distante, quando suas configurações de software que foram ajustadas para uma economia em crescimento não reagiram bem quando a economia começou a estagnar ou encolher. Coisas como esta acontecem quando você não entende o que seus cálculos (software) estão realmente fazendo. Se eles entendessem seu sistema de previsão, eles saberiam que precisavam entrar e mudar algo quando houve mudanças súbitas e dramáticas em seus negócios. Então, você tem os conceitos básicos de suavização exponencial explicados. Quer saber mais sobre o uso de suavização exponencial em uma previsão real, verifique meu livro Gerenciamento de inventário explicado. Copie os direitos autorais. O conteúdo no InventoryOps é protegido por direitos autorais e não está disponível para republicação. Dave Piasecki. É um operador próprio da Inventory Operations Consulting LLC. Uma empresa de consultoria que presta serviços relacionados à gestão de estoque, manuseio de materiais e operações de armazém. Ele tem mais de 25 anos de experiência em gerenciamento de operações e pode ser alcançado através do seu site (inventário), onde ele mantém informações relevantes adicionais. Meu negócio

Comments

Popular posts from this blog

China forex cn

A China começará a negociar oito novos pares de moeda estrangeira na quarta-feira, anunciou o banco central de Chinas em Pequim na terça-feira. De acordo com o banco central, a expansão do sistema de negociação forex não envolverá o renminbi chinês (RMB) ou o yuan. As seguintes sete moedas serão negociadas em relação ao dólar norte-americano na quarta-feira: o euro, dólar australiano, libra esterlina, iene japonês, dólar canadense, franco suíço e dólar de Hong Kong. O oitavo set vai emparelhar o euro com o iene japonês. No momento, o yuan é emparelhado na negociação com quatro moedas: o dólar dos EUA, o dólar de Hong Kong, o iene japonês e o euro. A expansão do sistema já provocou intensas especulações sobre se a China apreciaria o yuan no mesmo dia. Mas o governador do banco central, Zhou Xiaochuan, na sexta-feira passada negou relatos da imprensa estrangeira que aludiram a isso. O primeiro-ministro chinês, Wen Jiabao, afirmou nesta segunda-feira que a China nunca cederá à pressão ext...

Watts online trading system

Watts sistema de negociação para o dia de negociação de ações, futuros ou Forex Por Edward Kingston O que define o Watts Trading System para além do resto dos sistemas vendidos lá fora, é o preço. No negócio de negociação, você recebe mais por um preço menor e vice-versa. O Watts Trading System por Ryan Watts do Watts Trading Group é um pacote completo de negociação em si. Ele não só dá e ensina sinais de comércio, mas também inclui os outros dois aspectos extremamente importantes da profissão comercial. Eles são o aspecto psicológico da negociação eo aspecto de formação que vem sob a forma de Ryan Watts si mesmo e sua sala de negociação livre. O último Sistema de Negociação que tentamos foi o Overpriced e inútil Invicta Traders Trading System vendido por Neil Corke a. k.a. David Cooper ou Chris Lawrence e Matthew Kean da Invicta Comerciantes e Super Edge Trading, que são vendedores e não os próprios comerciantes. Essa foi a última gota que acabou com a busca dos Sistemas de Negociação...

Vnd para usd forex trading

O dólar estava dirigindo no interbank aberto novo de NY interbancos unchanged no dia contra o iene, o euro e o dólar canadense, ao mostrar as perdas moderadas de encontro à libra esterlina e ao dólar australian O dólar post-fed Anunciar rally no estoque global Leia mais.2017-03-17 11 14 UTC. European Edition. O euro permaneceu amplamente apoiado na sequência do retrocesso do movimento anti-UE nas eleições holandesas e após Nowotny membro do BCE disse Tarde ontem que a taxa de depósito pode ser aumentada antes da taxa repo Nowotny s comentários foram Leia mais.2017-03-17 08 38 UTC. Asian Edition. FX comércio teve um pouco de um respiradouro em NY comércio na sexta-feira, com a maioria dos principais dólares Pairings que consolidam-se após perdas de USD vistas mais cedo na semana A direção do dólar era na maior parte lateralmente, como testemunhado por um fim quase inalterado no DXY Incoming Leia mais.2017-03-17 18 23 UTC. OANDA usa bolinhos para fazer nossos Web site fáceis de usar-se e...